21.12.2011, 01:54
Geht mir genauso. Meine Gedanken bisher:
a) TiSa Laser werden gerne für die Erzeugung (ultra)kurzer Pulse verwendet. Sie sind zwar durchstimmbar allerdings nicht bis in den blauen Bereich. Normalerweise hat man dann so 780-800nm also wird hier eine Form von Frequenzverdopplung auf ca 400nm stattgefunden haben. Der Wirkungsgrad einer solchen Verdoppelung nimmt, als nichtlinearer Prozess zweiter Ordnung, mit dem Quadrat der Intensität zu, was die Verwendung eines gepulsten Lasers erklären würde. Bleibt die Frage, warum man dann blaues Laserlicht haben will. Meine Vermutung wäre, dass das mit den Kennlinien der Photodioden/oder CCDs oder was auch immer als "Sensor" fungiert, zusammenhängt. Da man ja aufgrund der benötigten Schnelligkeit der Dioden wahrscheinlich auf einige wenige Ausführungen bzw. Materialien angewiesen ist, kann ich mir gut vorstellen, dass diese ihren optimalen Detektionsbereich einfach im blauen Teil des Spektrums haben. Verstärken/Hochrechnen führt immer zu Rauschen, daher könnte dieser Aufbau der beste Kompromiss sein.
b) Also so ganz verstehe ich diesen Punkt nicht. Allerdings werden drehende Spiegel im Strahlengang gerne als periodische Modulation verwendet (also quasi An-Aus). Das einfachste Model eines gepulsten Lasers funktioniert z.B. so
c) Hier bietet sich ja quasi die uralte Technik der Serienfotografie an. Wir haben ja ein Objekt also hier z.B. die Flasche im Video und eine Sensorleiste entlang dieses Objektes. Wenn also Licht die Flasche passiert und ein Teil davon gestreut wird und dann auf die Sensoren trifft, "sehen" wir dieses Licht. Wir haben also einen Aufnahmebereich. Wenn jetzt eine Änderung an unserer Welle eintritt (z.B. die Lichtquelle wird ausgeschaltet/geblockt) müsste sich diese Änderung als Wellenfront oder sogenannte "Anderungsfront" entlang der Propagationsrichtung der Welle/des Feldes bewegen. Dabei passiert sie dann auch unseren Aufnahmebereich mit "nur" Lichtgeschwindigkeit, braucht also eine gewissen Zeit um den Bereich zu durchqueren. Natürlich ist das immer noch zu schnell für unsere Fotozellen, aber wenn wir diese Wellenmodulation periodisch gestalten, also "an" "aus" "an" "aus" etc (Eventuell durch den Spiegel?) mit einer definierten Periode kann man einen uralten Trick verwenden. Idealerweise müsste ich ja mehrere Aufnahmen in einer Periode machen um ein "Video" zu erhalten. Ich kann mir allerdings helfen, indem ich eine Aufnahme mit einem Vielfachen dieser Periode durchführe und dann jedes Mal die Phase minimal verschiebe (also quasi immer etwas Zeit dazuaddiere) und somit einen anderen Moment in der Periode aufnehme. Mit hinreichend langen Aufnahmeserien und minimaler Phasenvarianz kann ich so viele Bilder für sehr kurze Perioden erhalten und diese aufgrund der Periodizität zu einer zusammensetzen! Erschwerend kommt hier allerdings hinzu, dass das Zeitintervall den die Front zum passieren des Aufnahmebereichs braucht, sehr viel kleiner als die Periode des An-Aus-Schaltens sein dürfte. Das heißt also, dass man dann entsprechend noch deutlich umfangreichere Aufnahmeserien anfertigen müsste, bei der man die meiste Zeit über gar nichts sieht
Allerdings fällt mir gerade wieder ein, dass wir einen gepulsten Laser haben, der bei hinreichender Modenstabilität, natürlich schon periodisch moduliert daherkommt. Den selben "Taktgeber" für den Pulsbetrieb des Lasers könnte man dann auch für die Synchronisation mit den Sensoren verwenden. Das anschließende Serienprinzip bleibt aber das gleiche!
Der Spiegel würde dann wohl einfach zum Ausrichten des Strahls auf verschiedene Objekte oder soetwas verwendet werden (was logischer wäre, so wie er da einfach mit der Hand dranrumspielt...).
Wow Wall of Text
a) TiSa Laser werden gerne für die Erzeugung (ultra)kurzer Pulse verwendet. Sie sind zwar durchstimmbar allerdings nicht bis in den blauen Bereich. Normalerweise hat man dann so 780-800nm also wird hier eine Form von Frequenzverdopplung auf ca 400nm stattgefunden haben. Der Wirkungsgrad einer solchen Verdoppelung nimmt, als nichtlinearer Prozess zweiter Ordnung, mit dem Quadrat der Intensität zu, was die Verwendung eines gepulsten Lasers erklären würde. Bleibt die Frage, warum man dann blaues Laserlicht haben will. Meine Vermutung wäre, dass das mit den Kennlinien der Photodioden/oder CCDs oder was auch immer als "Sensor" fungiert, zusammenhängt. Da man ja aufgrund der benötigten Schnelligkeit der Dioden wahrscheinlich auf einige wenige Ausführungen bzw. Materialien angewiesen ist, kann ich mir gut vorstellen, dass diese ihren optimalen Detektionsbereich einfach im blauen Teil des Spektrums haben. Verstärken/Hochrechnen führt immer zu Rauschen, daher könnte dieser Aufbau der beste Kompromiss sein.
b) Also so ganz verstehe ich diesen Punkt nicht. Allerdings werden drehende Spiegel im Strahlengang gerne als periodische Modulation verwendet (also quasi An-Aus). Das einfachste Model eines gepulsten Lasers funktioniert z.B. so
c) Hier bietet sich ja quasi die uralte Technik der Serienfotografie an. Wir haben ja ein Objekt also hier z.B. die Flasche im Video und eine Sensorleiste entlang dieses Objektes. Wenn also Licht die Flasche passiert und ein Teil davon gestreut wird und dann auf die Sensoren trifft, "sehen" wir dieses Licht. Wir haben also einen Aufnahmebereich. Wenn jetzt eine Änderung an unserer Welle eintritt (z.B. die Lichtquelle wird ausgeschaltet/geblockt) müsste sich diese Änderung als Wellenfront oder sogenannte "Anderungsfront" entlang der Propagationsrichtung der Welle/des Feldes bewegen. Dabei passiert sie dann auch unseren Aufnahmebereich mit "nur" Lichtgeschwindigkeit, braucht also eine gewissen Zeit um den Bereich zu durchqueren. Natürlich ist das immer noch zu schnell für unsere Fotozellen, aber wenn wir diese Wellenmodulation periodisch gestalten, also "an" "aus" "an" "aus" etc (Eventuell durch den Spiegel?) mit einer definierten Periode kann man einen uralten Trick verwenden. Idealerweise müsste ich ja mehrere Aufnahmen in einer Periode machen um ein "Video" zu erhalten. Ich kann mir allerdings helfen, indem ich eine Aufnahme mit einem Vielfachen dieser Periode durchführe und dann jedes Mal die Phase minimal verschiebe (also quasi immer etwas Zeit dazuaddiere) und somit einen anderen Moment in der Periode aufnehme. Mit hinreichend langen Aufnahmeserien und minimaler Phasenvarianz kann ich so viele Bilder für sehr kurze Perioden erhalten und diese aufgrund der Periodizität zu einer zusammensetzen! Erschwerend kommt hier allerdings hinzu, dass das Zeitintervall den die Front zum passieren des Aufnahmebereichs braucht, sehr viel kleiner als die Periode des An-Aus-Schaltens sein dürfte. Das heißt also, dass man dann entsprechend noch deutlich umfangreichere Aufnahmeserien anfertigen müsste, bei der man die meiste Zeit über gar nichts sieht
Allerdings fällt mir gerade wieder ein, dass wir einen gepulsten Laser haben, der bei hinreichender Modenstabilität, natürlich schon periodisch moduliert daherkommt. Den selben "Taktgeber" für den Pulsbetrieb des Lasers könnte man dann auch für die Synchronisation mit den Sensoren verwenden. Das anschließende Serienprinzip bleibt aber das gleiche!
Der Spiegel würde dann wohl einfach zum Ausrichten des Strahls auf verschiedene Objekte oder soetwas verwendet werden (was logischer wäre, so wie er da einfach mit der Hand dranrumspielt...).
Wow Wall of Text